
CME12B32
Development Board

© Axiom Manufacturing, 1998
717 Lingco Dr., Suite 202
Richardson, TX 75081
972) 994-9676 FAX (972) 994-9170

email: gary@axman.com
web: http://www.axman.com

C M E 1 2 B 3 2 M A N U A L

2

CONTENTS

GETTING STARTED...3

DEVELOPMENT PHILOSOPHY ..3

TUTORIAL...4
USING DBUG12... 4

Example Program.. 4
Writing to Internal Flash Memory using AX12... 5

USING THE BDM... 6
Example Program.. 6
Writing to Internal Flash Memory using the BDM ... 7

CME12B32 BOARD LAYOUT..8

MEMORY MAP..9

JUMPERS ...10
MISCELLANEOUS JUMPERS.. 10
MOD JUMPERS .. 10
MEM-SEL JUMPERS .. 10
EVU JUMPERS ... 10

PORTS AND CONNECTORS...11
BUS_PORT.. 11
MCU_PORT1 ... 11
MCU_PORT2 ... 12
COM1... 12
J2 ... 12
KEYPAD... 13
LCD_PORT .. 13
DEBUG... 13

TROUBLESHOOTING ..14
TROUBLESHOOTING STEPS.. 14
TIPS AND SUGGESTIONS.. 15

AX12 Program... 15
Code Execution.. 15

C M E 1 2 B 3 2 M A N U A L

3

GETTING STARTED
Thank you for purchasing our CME12B32 development board! The Axiom CME12B32 single board computer is a fully
assembled, fully functional development system for the Motorola 68HC12B32 Microcontroller, complete with wall plug
style power supply and serial cable. To get started quickly, perform the following test now to make sure everything is
working correctly:

1. Create a directory on your PC hard drive for the utility software and copy the contents of the UTL-12B32 disk to that
directory. NOTE: it is possible to run the utility software from the floppy disk but not recommended.

2. Connect one end of the supplied 9-pin serial cable to a available COM port on your PC. Connect the other end of the
cable to the COM1 port on the CME12B32 board.

3. Apply power to the board by plugging in the power supply that came with the system.

4. Change to the directory containing the utility software and execute the program: AX12.EXE.

5. Select the PC COM Port that you’re using to attach the development board.

6. Select the development board type: CME12-B32.

7. From the main menu select “Terminal Window”.

8. Press then release the RESET button on the CME12B32 board now.

9. If everything is working properly, you should see the monitor prompt in the terminal window. Your board is now ready
to use! Press any key to enter the monitor/debugger.

If you do not see the monitor/debugger message prompt, or the text is garbage, see the TROUBLESHOOTING section of
this manual.

DEVELOPMENT PHILOSOPHY
Software development on the CME12B32 can be performed using either the DBUG12 monitor utility installed in EPROM
(sockets U6/U7), the DBUG12 monitor programmed into the internal Flash EPROM or a Background Debug Module
(BDM) connected to the DEBUG connector. Any of these tools can be used to assist in creating and debugging your
program that is stored in either internal RAM ($800-$C00) or external RAM (U4/U5 see Memory Map).

After satisfactory operation running under a debugger, your program can be written to the Internal Flash Memory by
relocating its start address to $8000 and programming it using either the included AX12 program or a BDM. Your program
will then run automatically whenever the CME12B32 is powered on or RESET is applied.

Option jumpers on the board allow for easy transition from one memory type to another and restoring an operating
monitor.

C M E 1 2 B 3 2 M A N U A L

4

TUTORIAL
This tutorial will walk you thru the complete development cycle of a very simple program. This should help you get started
with the specifics of the CME12B32 development process. Be sure to read the rest of this manual as well as the
documentation on the disk if you need further information.

You can develop software using either your PCs serial port and the DBUG12 monitor utility or your PCs Parallel port and a
Background Debug Module (BDM) connected to the DEBUG connector.

Using DBUG12

Example Program
For this tutorial we’ll use an assembly language program on the UTL12 software disk called HELLO3.ASM. This is a
simple program that just sends a text string to your PC serial port using the HC12 SCI0 (COM1) port. You can substitute
your own program here if you wish but, to verify everything is working properly, it’s a good idea to start with something
simple.

1. If you haven’t done so already, verify that the board is connected and operating properly by following the steps under
“GETTING STARTED”.

2. At your PC’s DOS command line prompt, change to your UTL12 software directory.

3. Execute the command: AX12 ↵↵
This will launch the Axiom programming interface for the HC12 development boards.

4. Select "Assembler" from the main menu and input the file called HELLO3.ASM which is located in the program
directory. This will assemble our test source code.

5. If any errors were found, the program listing would be displayed on the screen which contains the errors. Otherwise,
you should have the new file HELLO3.S19 (a Motorola hex object file) in your directory.

6. Select “Terminal Window” from the menu.

7. Press and release the RESET button on the board. You should see the monitor prompt.

8. Press any key to start the debugger.

9. Type LOAD ↵↵
This will prepare the monitor to receive a program.

10. Press the Page Up key and when prompted for a file name, select the file just created called HELLO3.S19
then select [OK]. Your program will be sent to internal RAM.

11. Type CALL 900 ↵↵
This tells the monitor to execute the subroutine at address $900, which is the start of our test program.

12. If everything is working properly you should see the message “Hello World” echoed back to your terminal screen then,
since we return at then end of our program, lines containing the internal register status and the monitor prompt.

13. If you didn’t get this message, try going thru this tutorial once more then, if still no go, see the TROUBLESHOOTING
section in this manual

You can modify the hello program to display other strings or do anything you want. The procedures for assembling your
code, uploading it to the board and executing it remain the same. The monitor has many powerful features such as
breakpoints, memory dump and modify and program trace. Type HELP at the monitor prompt for a listing of commands
available.

C M E 1 2 B 3 2 M A N U A L

5

Writing to Internal Flash Memory using AX12

When you’re finished with program development, you will probably want to write your program to Internal Flash Memory
so that it executes automatically when you apply power to the board. The following procedure is the easiest way to
accomplish this:

1. Use a text editor to modify HELLO3.ASM. You can use the built in “Edit” command in AX12 if you wish. Change the
start of your program to program space in the external Flash Memory area ($8000 for example). In the case of
HELLO3.ASM, simply comment out the “ORG MONSTRT” line and remove the comment from the “ORG PRGSTRT”
line. Also, remove the comment in front of the “LDS #STACK” line, so that our program will initialize the stack (needed
when running stand-alone but should not be done while running under the monitor since it must handle the stack).

2. Finally, comment out the “RTS” return line following the “ENDPROG” label. This will allow the program to do an
endless loop instead of returning, since we won’t be calling it from the monitor. Save the program and exit the editor.

3. Select “Assembler” from the AX12 menu to assemble the modified HELLO3.ASM program.. This will prompt you for
that file name then execute the batch file DO_ASM.BAT which automates the assembly process and creates a listing
file.

4. Select “HC12 Utilities” from the menu. Follow ALL the onscreen instructions for executing the utilities firmware. If you
have trouble here, see the TROUBLESHOOTING section.

5. From the utilities menu, select "Erase Internal Flash" which must be done before writing over previously programmed
memory.

6. Select “Program Internal Flash” and when prompted for a file name, enter the new HELLO3.S19 file then select [OK].

7. Follow the instructions on screen when finished programming.

8. Remove the MOD jumpers so that the board will reset in single chip mode (auto-start flash memory)

9. Select “Terminal Window” from the menu then cycle power or press RESET on the board. Your new HELLO program
should start automatically.

WARNING: As a safety precaution, ALWAYS remove the VPP_EN jumper after programming to protect the micro from
being accidentally erased or damaged.

To return to development mode, simply re-install the MOD jumpers and press RESET.

See the Online "Help" menu option for more information and documentation for the other utilities included in AX12.

C M E 1 2 B 3 2 M A N U A L

6

Using the BDM

If you purchased the BDM module, the easiest way to get started is to become familiar with the BDM software. If you have
not done so already, install the BDM software now (see the BDM reference manual for instructions).

After installing and running the BDM software, you must Configure it to work properly with the CME12B32 board. Select
the menu item Config / Configure to see the dialog box as follows:

Make sure the Device select is set to 912B32 and Breakpoints are set to Hardware. Also the reset Macro file should be
selected and point to the directory you installed the BDM software into. There is an example reset macro called
B32RESET.MAC that was written specifically for the HC12B32 you might want to use. The macro file will enable the
external bus even if Single Chip Mode is selected, however, the internal flash eprom will contain the reset and interrupt
vectors so that unless programmed, the BDM will be more difficult to use.

To debug code using External RAM (JP3 OFF) set the "Mode after reset" option to Expanded Wide. Whenever the BDM
software is RESET, it will use External Memory addressing and will go fetch the address at $FFFE-$FFFF as the reset
vector and set the Program Counter to this address.

Click the RESET button in the BDM software so the configuration changes will take effect. The memory will most likely
change and the PC will reset to whatever value is in external RAM location $FFFE. Since this is RAM, you can modify this
value using the data window if you like. It's a good idea to set this word in your application program.

Example Program
Included on CME12B32 software disk is a program called HELLO3.ASM. This is a simple program that outputs a text
string to the HC12 serial port. It can be modified and assembled using the included free assembler, but for now just load it
into the BDM by selecting File / Load S19 or Hex from the menu. The file name is HELLO3.S19.

This program starts at address $8000, but since it does not include a RESET vector, you must change the Program
Counter manually. Double click the PC address in the Regs window. Type in 8000 and click OK. The Program window
should now change to the beginning of the Hello3 program at address $8000.

Since this program outputs text to the serial port, you need some way of monitoring that port. If you have not done so
already, connect a serial port from your PC to the development board as described under Getting Started. Run the
AX12.EXE program and select Terminal Window (or any windows terminal program set to 9600,N,8,1) to monitor the
serial port.

C M E 1 2 B 3 2 M A N U A L

7

Switch back to the BDM program and select GO. To see the result of the program, switch back to the Terminal program,
you should see the message "Hello World" displayed there.

Writing to Internal Flash Memory using the BDM
The example program above is a simple one, but the procedures are the same for any size program. When you're
finished modifying and debugging your application software, you will probably want to write it to internal flash memory so
that it runs whenever power is applied to the board.

To do this you should modify your program to initialize all vectors and peripherals necessary to operate. Make sure you
put a reset vector in your program, such as follows:

ORG $FFFE
DW RESET ; Your reset vector to start your software

This will put the address of the label RESET at the reset vector address $FFFE so that it will start there when power is
applied.

Also, don't forget to either Disable or Update the Watch Dog Timer peripheral in your software. This is important because
the HC12B32 enables it by default, but it is automatically disabled when debugging in BDM mode. If you forget to do this,
your software will RESET every couple of milliseconds.

To program your software into Flash memory, install the VPP_EN jumper on the development board to supply power to
erase and program the flash memory.

You should also turn off all Reset macros from loading and configure the BDM software to reset in Single Chip mode. Do
this in the Config menu.

Next, select Erase B32 Flash EEPROM from the Debug menu. Check enable to erase boot area, which will allow the
Reset Vector to be written. Select start to erase the internal flash memory.

You can now program your code into flash memory. Select Program B32 Flash EEPROM from the Debug menu. Select
the Browse button and locate your application program. Since your program will usually be located above $8000, you
should select Upper Memory. Enable program boot area if you are changing the reset or other interrupt vectors, then
select "Start to Program" button.

After programming is complete, you can remove the BDM module and your program should start whenever the
CME12B32 board is powered on.

WARNING: As a safety precaution, ALWAYS remove the VPP_EN jumper after programming to protect the micro from
being accidentally erased or damaged.

C M E 1 2 B 3 2 M A N U A L

8

CME12B32 BOARD LAYOUT

C M E 1 2 B 3 2 M A N U A L

9

MEMORY MAP
Following is the DEFAULT memory map for this development board:

0000

01FF
Internal Registers

Register Following Space

0200 – 026F
0270 – 027F
0280 – 03FF

 CS0 – CS6 Chip Selects P-SEL
 CS7, LCD Ports
 unused

0400
07FF

External RAM in U4/5 if JP2 IN and Expanded Bus On

0800

0BFF
Internal RAM

0C00
0CFF External RAM in U4/5 if JP2 IN and Expanded Bus On

0D00

0FFF
Internal EEPROM

1000

7FFF

External RAM in U4/5 if JP2 IN and Expanded Bus On

8000

EFFF

Expanded Wide Mode: JP3 IN = External EPROM in U6/7 (UTL12 / Debug12)

JP3 OUT = External RAM Space U4/5

Single Chip Mode: Internal FLASH EEPROM Space

F000

FEFF
Expanded Vectors

FF00

FFBF
BDM (if active)

FFC0

FFDD
Interrupt Vectors

FFFE
FFFF

RESET Vector

NOTE: Internal Flash EEPROM can be enabled while in expanded modes and will cause external memory residing at the
same memory location to be removed from the memory map.

C M E 1 2 B 3 2 M A N U A L

10

JUMPERS

Miscellaneous Jumpers

JP1 IN = U4/5 (SRAM) write enabled
OUT = U4/5 (SRAM) write disabled (write protect)

JP2 IN = External bus/memory devices enabled (U4/5/6/7 on if Expanded Mode)
OUT = External Memory disabled

JP3
JP2 must be IN for JP3 operation.

IN = External Memory Map: U4/5 = $0000-$7FFF and U6/7 = $8000 - $FFFF
OUT = External Memory Map: U4/5 = $0000 - $FFFF (U6/7 not in memory map)

VPP_EN IN = Flash Erase/Programming Voltage (VPP) is ON
OUT = Flash Erase/Programming Voltage (VPP) is OFF

MOD Jumpers
A B Note: Expanded Narrow Mode not available.

Out Out Single Chip Mode (Internal Flash EEprom Boot)

IN IN Expanded Wide Mode (U4/5 or U6/7 Boot)

MEM-SEL Jumpers
1,3,4 IN: enables RAM or EEPROM, 32K devices to U6/7

1,3 IN: enables RAM or EEPROM, 8K devices in U6/7

2,4 IN: enables EPROM, 8K or 32K devices in U6/7 (Default)

EVU Jumpers

JP4 and JP5 with R5 and R6 provide backward compatibility with the Flash Options on the Motorola MC68HC912B32
EVU Board. These can be installed by the user and the Debug12.s19 file programmed into the Internal Flash EPROM for
EVU similar operation of the development board. Normally this is not necessary due to the Utilities provided in the UTL12
EPROM's.

C M E 1 2 B 3 2 M A N U A L

11

PORTS and CONNECTORS

 BUS_PORT
GND 1 2 D11
D10 3 4 D12

The BUS_PORT supports off-board memory devices as follows:

D9 5 6 D13
D8 7 8 D14
A0 9 10 D15
A1 11 12 A2

A10 13 14 A3
/ OE 15 16 A4
A11 17 18 A5

A9 19 20 A6
A8 21 22 A7

A12 23 24 A13
/ WE 25 26 CS0
CS1 27 28 CS2
CS3 29 30 CS4
CS5 31 32 IRQ
+5V 33 34 /P-SEL
/RW 35 36 CS6

E 37 38 CS7
GND 39 40 / RESET

D8 - D15 High Byte Data Bus in Wide Expanded Mode and Peripheral 8 bit data bus.
Port A in Single Chip Mode.

A0 – A15 Memory Addresses 0 to 15.

/OE Memory Output Enable signal, Active Low. Valid with ECLK and R/W high.

CS0 – CS7 Peripheral chip selects, 16 bytes each located at $200 - $27F hex, 8 bit
access (narrow bus).

/WE Memory Write Enable signal, Active Low. Valid with ECLK high and R/W low.

IRQ HC12 IRQ (PE1) Interrupt Input.

/RW HC12 Read/Write (PE2) control signal.

E HC12 ECLK (PE4) bus clock signal. Stretch should be enabled in software.

/P-SEL Selects Peripheral area, register following space, 8 bits wide.

/RESET HC12 active low RESET signal.

 MCU_PORT1
A14 1 2 A15
D0 3 4 D1

The MCU_PORT1 lines provide access to the peripheral features and I/O lines
of the HC12 as follows:

D2 5 6 D3
D4 7 8 D5
D6 9 10 D7

/XIRQ 11 12 /DBE
VFP 13 14 /LSTRB
+5V 15 16 GND
PP6 17 18 PP7
PP4 19 20 PP5
PP2 21 22 PP3
PP0 23 24 PP1
+5V 25 26 GND
PT0 27 28 PT1
PT2 29 30 PT3
PT4 31 32 PT5
PT6 33 34 PT7

D0 – D7 Low Byte of the Data Bus in Wide Expanded Mode. Port B in Single Chip
Mode.

/XIRQ HC12 XIRQ interrupt input .

VFP Programming voltage, 12v, when VPP_EN jumper is on.

/LSTRB HC12 LSTRB (PE3) output indicates 8 bit bus access. Should be enabled in
software for bus use.

PP0 – PP7 HC12 Port P I/O or PWM port. PP3-7 also used by the KEYPAD Port.

PT0 – PT7 HC12 Port T I/O or Timer port.

C M E 1 2 B 3 2 M A N U A L

12

 MCU_PORT2
VRH 1 2 VRL
+5v 3 4 GND

The MCU_PORT2 lines provide access to the peripheral features and I/O
lines of the HC12 as follows:

PAD0 5 6 PAD1
PAD2 7 8 PAD3
PAD4 9 10 PAD5
PAD6 11 12 PAD7

+5V 13 14 GND
PS0 / RXD 15 16 PS1 / TXD

PS2 17 18 PS3
PS4 19 20 PS5
PS6 21 22 PS7
+5v 23 24 GND

PDLC6 25 26 PDLC7
PDLC4 27 28 PDLC5
PDLC2 29 30 PDLC3
PDLC0 31 32 PDLC1

+5V 33 34 GND

VRH / VRL HC12 A/D Converter Reference Pins. See A/D Reference Section.

PAD0 – PAD7 HC12 Port AD is an input port or the A/D Converter inputs.

PS0 – PS7 HC12 Port S I/O or Serial Port lines. PS4-7 also used by the KEYPAD
Port.

RXD / TXD Serial Port (SCI) receive and transmit pins.

PDLC0 – PDLC7 HC12 PDLC I/O or communication port lines.

 COM1
1

TXD0 2 6
RXD0 3 7

4 8
GND 5 9

The COM-1 port has a Female DB9 connector that interfaces to the HC12
internal SCI0 serial port. It uses a simple 2 wire asynchronous serial
interface.
Pins 1, 4, and 6 are connected for default handshake standards.
Pins 7 and 8 are connected for default handshake standards.
Handshake pins can be easily isolated and connected to I/O ports if
necessary.

J2
1 T2IN
2 R2OUT
3 R2IN
4 T2OUT

The J2 connector contains spare RS232 translator inputs and outputs. It can be used
for implementing hardware handshaking on COM1 if necessary.

C M E 1 2 B 3 2 M A N U A L

13

KEYPAD
1 PS4
2 PS5
3 PS6
4 PS7
5 PP4
6 PP5
7 PP6
8 PP7

The KEYPAD connector is a passive 8-pin connector that can be used to connect a 4 x
4 matrix (16 key) keypad device. The connector is mapped to the HC12 I/O ports S and
P. This interface is implemented as a software keyscan. Pins PS4-7 are used as
column drivers which are active low outputs. Pins PP4-7 are used for row input and
provide an idle hi condition with internal pull-ups to provide active key detection under
software control.

See the HC12 Technical Reference Manual and sample source code for a full
description of these pins and how to configure and use these ports.

See the program KEYPAD.ASM for an example of using this port.

LCD_PORT
The LCD_PORT interface is connected to the data bus and memory mapped to locations 270 and 271 hex in the
register following area (see Memory Map). Address 270 is the Command register, address 271 is the Data register.

The interface supports all OPTREX DMC series displays in 8 bit bus mode with up to 80 characters and provides
the most common pinout for a dual row rear mounted display connector. Power, ground, and Vee are also
available at the LCDPORT-1 connector.

+5V 2 1 GND
A0 4 3 LCD-Vee

LCD1 6 5 /RW
D9 8 7 D8

D11 10 9 D10
D13 12 11 D12
D15 14 13 D14

Command Register: $270
Data Register: $271

LCD-Vee is supplied by U13 and is adjusted by the R18 Potentiometer
(adjustable resistor).

See the file KEYLCD.ASM for an example program using this LCD connector.

LCD3 2 1 LCD2

4 3 LCD4

Additional lines can be used as enables for larger panels and are mapped as:

LCD2 = $274 & $275 LCD4 = $27C & $27D
LCD3 = $278 & $279

DEBUG
The DEBUG port is a 6 pin header compatible in pinout with the Motorola Background Debug Mode (BDM) Pod.
This allows the connection of a background debugger for software development, programming and debugging in
real-time, since the BDM control logic does not reside in the CPU.

A Background Debug Module is available from the manufacturer. Contact Axiom Manufacturing for more
information.

BGND 1 2 GND
3 4 /RESET
5 6 +5V

See the HC12 Technical Reference Manual for complete documentation
of the BDM.

C M E 1 2 B 3 2 M A N U A L

14

TROUBLESHOOTING

The CME12B32 board is fully tested and operational before shipping. If it fails to function properly, inspect the board for
obvious physical damage first. Ensure that all socketed IC devices are properly seated in the their sockets.

The most common problems are improperly configured communications parameters and attempting to use the wrong
COM port (on the PC AND on the development board). Verify that your communications port is working by substituting a
known good serial device, or by doing a loop back diagnostic. Verify that no other devices are conflicting with the port
(such as a mouse, modem, etc.).

Check your hardware configuration jumpers and switches. Verify the power source. You should measure 9 volts between
GND and +9V test point pads on the board near J1. If no voltage is found, verify wallplug connections to 115VAC outlet
and power connector. Disconnect all external connections to the board except for COM1 to the PC and the wall plug.
Follow these steps in the order given:

Troubleshooting Steps

1. Visual Inspection

2. Verify that all jumpers are set properly.

3. Verify power by checking for +9 volts between GND and +9V test point pads.

4. Verify the Monitor EEPROM for proper installation (no bent pins) and proper jumper settings for the device
used.

5. Re-Check the communications parameters.

6. Disconnect any peripheral devices including display and keyboard.

7. Make sure that the RESET line is not being held low.

8. Verify presence of 8MHz sine wave on the crystal if possible.

9. Please check off these steps and any others you may have performed before calling so we can better help
you.

C M E 1 2 B 3 2 M A N U A L

15

Tips and Suggestions

Following are a number of tips, suggestions and answers to common questions that will solve most problems users have
with the AX12 development system. This information is also available in the AX12 program under Troubleshooting, which
will have the most complete, updated information. There also may be a newer version of the AX12 utility software
available. You can download the latest version for FREE on our web page at: WWW.AXMAN.COM

AX12 Program

• If you’re trying to program memory or start the HC12 Utilities, make sure all jumpers are installed.

• Be certain that the data cable you’re using is bi-directional and is connected securely to both the PC and the
board. Also, make sure you are using the correct serial port.

• Make sure the correct power is supplied to the board. You should only use a 9 volt, 300 mA adapter or power
supply. If you’re using a power strip, make sure it is turned on.

• Make sure you load your code to an address space that actually exists. See the Memory Map if you’re not sure.

• Make sure you're not over-writing memory used by the monitor program.

• If you’re running in a multi-tasking environment (such as Windows™) close all programs in the background to be
certain no serial conflict occurs.

• If the Assembler menu option doesn’t work properly on your system you can modify it’s operation by editing the
file DO_ASM.BAT in the AX12 directory. This can also be done from the Options menu.

• You can reset all AX12 configuration options to their original state by deleting the file named AX12.CFG. This file
will be re-created the next time you run AX12.

Code Execution

• Make sure ALL jumpers are set correctly according to your board’s configuration. Read the hardware manual
section on jumpers carefully if you’re not sure.

• To execute in single chip mode, remove both MOD jumpers.

• If you’re using D-Bug12 breakpoints may not be acknowledged if you use the CALL command. You should use
one of the GO command instead. This should be fixed in a later version.

• If you programmed your code into internal flash memory over the Debug Monitor and it doesn’t run check the
HC12 reset vector located at FFFEh - FFFFh. These 2 bytes contain the address in the micro. where execution
will begin when the unit is powered on.

• When running your code stand-alone, you must initialize ALL peripherals used by the micro, including the Stack,
Serial Port, etc.

• You must either reset the COP watchdog timer in the main loop of your code or disable it when not running under
MBug or BDM mode. The micro enables this by default and if you don't handle it your code will reset every
couple of ms.

